B.Sc. 3rd Semester (Honours) Examination, 2022 (CBCS)

Subject : Chemistry

Course : CC-V

(Physical Chemistry)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

	1. Answer <i>any five</i> questions of the following:	2×5=10
	(a) Explain why specific conductance of a solution of NaCl in water decreases with while the equivalent conductance increases with dilution.	dilution 2
	(b) Define chemical potential. Explain whether it is an extensive property.	1+1=2
	(c) Starting from Van't Hoff isotherm establish the condition for equilibrium of a c reaction.	hemical 2
	(d) Show that in a rectangular box with sides $L_x = L$ and $L_y = 2L$, there is an ac degeneracy between the states (1, 4) and (2, 2).	cidental 2
	(e) Define coefficient of viscosity. Find its dimension.	1+1=2
	(f) Explain whether partition coefficient depends on temperature.	2
	(g) Explain whether the function $\psi = \frac{x^2 + 14x + 45}{x^2 - 4x - 45}$ behaves well within the range $-8 \le x \le 8$. 2
	(h) Depict diagrammatically the variation of ΔS_{mix} during preparation of an ideal mixture	. 2
2.	Answer any two questions of the following:	5×2=10
	(a) Arrive at the equation for the determination of coefficient of viscosity of a liquid by sphere model.	y falling 5
	(b) (i) if $\Psi_n = \sqrt{\frac{2}{L}} sin \frac{n\pi x}{L}$ for a particle in an one dimensional box of length <i>L</i> , evaluate	<i>x</i> .
	(ii) If \widehat{M} is a linear operator and if $\widehat{M}\Psi_1 = b\Psi_1$ and $\widehat{M}\Psi_2 = b\Psi_2$, prove that $C_1\Psi_1 + also$ an eigenfunction of \widehat{M} with eigenvalue b.	$C_2 \Psi_2$ is 3+2=5
		512-5

- (c) (i) Discuss the principle behind determination of equilibrium constant of the reaction $KI + I_2 \rightleftharpoons KI_3$ utilizing Nernst's distribution law.
 - (ii) State Ostwald's dilution law.

24430

4+1=5

Please Turn Over

- (d) (i) Define ionic mobility. Derive a relation between ionic mobility and ionic conductance.
 - (ii) Establish the relation between molar conductance and equivalent conductance of Aluminium phosphate. 3+2=5
- 3. Answer any two questions of the followings:
 - (a) (i) Find an expression for ΔG_{mix} when n_A moles of A is mixed with n_B moles of B to prepare an ideal solution. From it find the value of ΔH_{mix} during ideal mixing.
 - (ii) At 1000K, $K_p = 3.5$ for the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ when pressure is expressed in atmosphere unit. Find ΔG°_p and ΔG°_c for the reaction at 1000K and explain the reason behind the difference. (3+2)+(4+1)
 - (b) (i) For the reaction $2A(g) \rightleftharpoons 2B(g) + C(g)$, the value of K_p of the reaction increases by 2% per degree celsius rise in temperature at 227°C. Calculate ΔH° and ΔG° for the reaction at this temperature.
 - (ii) Show that $\left(\frac{\partial \mu_i}{\partial P}\right)_{T,N} = \overline{V}_i$, where the terms have their usual significance.
 - (iii) State Fick's law and hence identify the terms 'flux' and 'force'.
 - (iv) What are phenomenological relations?
 - (c) (i) For the photoelectric effect of sodium metal, $K_{max} = 3 \cdot 41 \times 10^{-19} J$ for a radiation of wavelength 3125Å and $K_{max} = 1 \cdot 95 \times 10^{-19} J$ for a radiation of wavelength 4047Å. Find Planck's constant and the work function for sodium metal if K_{max} represents the maximum kinetic energy of emitted electrons.
 - (ii) Find the average potential energy and average kinetic energy using the ground state wave function of the harmonic oscillator.
 - (iii) Name two experiments which proved particle have wave character. 3+5+2
- (d) (i) What is fugacity? Write down it's significance.
 - (ii) How can we determine Λ_0 and dissociation constant of a weak electrolyte graphically?
 - (iii) Show that the temperature coefficient of the viscosity coefficient of a gas is opposite in sign to that of a liquid.
 - (iv) Draw and explain the conductometric curve for the titration of KCl vs AgNO₃.

2+3+3+2

 $10 \times 2 = 20$

3+2+3+2