B.Sc. 3rd Semester (Honours) Examination, 2022 (CBCS)
 Subject : Chemistry
 Course : CC-V
 (Physical Chemistry)

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions of the following: $2 \times 5=10$
(a) Explain why specific conductance of a solution of NaCl in water decreases with dilution while the equivalent conductance increases with dilution.
(b) Define chemical potential. Explain whether it is an extensive property. $\quad 1+1=2$
(c) Starting from Van't Hoff isotherm establish the condition for equilibrium of a chemical reaction.
(d) Show that in a rectangular box with sides $\mathrm{L}_{\mathrm{x}}=\mathrm{L}$ and $\mathrm{L}_{\mathrm{y}}=2 \mathrm{~L}$, there is an accidental degeneracy between the states $(1,4)$ and $(2,2)$.
(e) Define coefficient of viscosity. Find its dimension. $1+1=2$
(f) Explain whether partition coefficient depends on temperature. 2
(g) Explain whether the function $\psi=\frac{x^{2}+14 x+45}{x^{2}-4 x-45}$ behaves well within the range $-8 \leq x \leq 8$. 2
(h) Depict diagrammatically the variation of $\Delta \mathrm{S}_{\text {mix }}$ during preparation of an ideal mixture. 2
2. Answer any two questions of the following: $5 \times 2=10$
(a) Arrive at the equation for the determination of coefficient of viscosity of a liquid by falling sphere model.
(b) (i) if $\Psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}$ for a particle in an one dimensional box of length L, evaluate \bar{x}.
(ii) If \widehat{M} is a linear operator and if $\widehat{M} \Psi_{1}=b \Psi_{1}$ and $\widehat{M} \Psi_{2}=b \Psi_{2}$, prove that $C_{1} \Psi_{1}+C_{2} \Psi_{2}$ is also an eigenfunction of \widehat{M} with eigenvalue b.
(c) (i) Discuss the principle behind determination of equilibrium constant of the reaction $K I+I_{2} \rightleftharpoons K I_{3}$ utilizing Nernst's distribution law.
(ii) State Ostwald's dilution law.
(d) (i) Define ionic mobility. Derive a relation between ionic mobility and ionic conductance.
(ii) Establish the relation between molar conductance and equivalent conductance of Aluminium phosphate.
$3+2=5$
3. Answer any two questions of the followings:
$10 \times 2=20$
(a) (i) Find an expression for $\Delta \mathrm{G}_{\text {mix }}$ when n_{A} moles of A is mixed with n_{B} moles of B to prepare an ideal solution. From it find the value of $\Delta \mathrm{H}_{\text {mix }}$ during ideal mixing.
(ii) At $1000 \mathrm{~K}, \mathrm{~K}_{\mathrm{p}}=3 \cdot 5$ for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ when pressure is expressed in atmosphere unit. Find $\Delta G^{\circ}{ }_{p}$ and $\Delta G^{\circ}{ }_{c}$ for the reaction at 1000 K and explain the reason behind the difference.
$(3+2)+(4+1)$
(b) (i) For the reaction $2 A(g) \leftrightharpoons 2 B(g)+C(g)$, the value of K_{p} of the reaction increases by 2% per degree celsius rise in temperature at $227^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{G}^{\circ}$ for the reaction at this temperature.
(ii) Show that $\left(\frac{\partial \mu_{i}}{\partial P}\right)_{T, N}=\bar{V}_{i}$, where the terms have their usual significance.
(iii) State Fick's law and hence identify the terms 'flux' and 'force'.
(iv) What are phenomenological relations?
(c) (i) For the photoelectric effect of sodium metal, $K_{\max }=3.41 \times 10^{-19} \mathrm{~J}$ for a radiation of wavelength $3125 \AA$ and $K_{\max }=1.95 \times 10^{-19} \mathrm{~J}$ for a radiation of wavelength $4047 \AA$. Find Planck's constant and the work function for sodium metal if $K_{\max }$ represents the maximum kinetic energy of emitted electrons.
(ii) Find the average potential energy and average kinetic energy using the ground state wave function of the harmonic oscillator.
(iii) Name two experiments which proved particle have wave character. 3+5+2
(d) (i) What is fugacity? Write down it's significance.
(ii) How can we determine Λ_{0} and dissociation constant of a weak electrolyte graphically?
(iii) Show that the temperature coefficient of the viscosity coefficient of a gas is opposite in sign to that of a liquid.
(iv) Draw and explain the conductometric curve for the titration of KCl vs AgNO_{3}.

$$
2+3+3+2
$$

